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Planar first-passage percolation
• Idea: Random perturbation of Euclidean geometry, formed by a random media 

with short-range correlations (Hammersley-Welsh 65).
In this talk we focus on the discrete planar setting, working on the lattice ℤ2.

• Edge weights: Independent and identically distributed non-negative 𝜏𝑒 𝑒∈𝐸 ℤ2 .

In this talk assume (partly for simplicity) that their common distribution is 
absolutely continuous and has compact support in (0,∞).
E.g., 𝜏𝑒 ∼ Uniform[1,2].

• Passage time: A random metric 𝑇𝑢,𝑣 on ℤ2 given by

𝑇𝑢,𝑣 ≔ min෍

𝑒∈𝑝

𝜏𝑒

with the minimum over paths 𝑝 connecting 𝑢 and 𝑣.

• Geodesic: A path 𝑝 realizing 𝑇𝑢,𝑣, denoted 𝛾𝑢,𝑣.
Existence and uniqueness guaranteed by absolute continuity assumption.

• Goal: Understand the large-scale properties of the metric 𝑇.
In particular, understand long geodesics.
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Basic predictions

• For a point 𝑣 ∈ ℝ2 and 𝐿 > 0, consider the passage time 𝑇𝟎,𝐿𝑣 and geodesic 𝛾𝟎,𝐿𝑣
(abbreviating (0,0) to 𝟎 and rounding 𝐿𝑣 to the closest lattice point of ℤ^2). 

• Basic predictions: as 𝐿 → ∞, 
𝔼

the transversal fluctuations of 𝛾𝟎,𝐿𝑣 are of order 𝐿𝜉.

The model is in the KPZ universality class with 𝜒 =
1

3
and 𝜉 =

2

3

(Huse-Henley 85, Kardar 85, Huse-Henley-D.S.Fisher 85, Kardar-Parisi-Zhang 86) 

• Limit norm: 𝜇(𝑣) is a (deterministic) norm on ℝ2, almost surely given by

𝜇 𝑣 = lim
𝐿→∞

𝑇𝟎,𝐿𝑣
𝐿

• Limit shape: unit ball 𝐵 ≔ 𝑣 ∈ ℝ2 ∶ 𝜇 𝑣 ≤ 1 strictly convex.
Specific shape of 𝐵 depends on the edge weight distribution.
Unclear whether it is ever a Euclidean ball.
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𝔼 𝑇𝟎,𝐿𝑣 = 𝜇 𝑣 𝐿 − 𝑐1𝐿
𝜒 1 + 𝑜 1

𝑆𝑡𝑑 𝑇𝟎,𝐿𝑣 = 𝑐2𝐿
𝜒 1 + 𝑜 1



Rigorous results

• Norm: 𝜇 𝑣 is well defined. Not proved that its unit ball 𝐵 is strictly convex!
Not even proved that 𝐵 is never the ℓ1 or ℓ∞ ball!

• Standard deviation:

𝑆𝑡𝑑 𝑇𝟎,𝐿𝑣 ≥ 𝑐 log 𝐿 (Newman-Piza 95)

𝑆𝑡𝑑 𝑇𝟎,𝐿𝑣 ≤ 𝑐
𝐿

log 𝐿
(Benjamini-Kalai-Schramm 02)

• Transversal fluctuations: version of 𝜉 ≥
1

3
(Licea-Newman-Piza 96)

No proof that the transversal fluctuations are of order 𝑜(𝐿)!

• Book of Auffinger-Damron-Hanson 15 surveys the rigorous state-of-the-art.
Many basic questions remain open.

• Detailed understanding available for a related integrable model:
Directed last-passage percolation (with specific edge weight distributions).
However, no integrable first-passage percolation model is known.
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Disordered systems perspective

• Disordered ferromagnet: 𝜏 = 𝜏𝑒 𝑒∈𝐸 ℤ𝑑 IID non-negative edge weights as before. 

The disordered Ising ferromagnet is the model on 𝜎: ℤ𝑑 → −1,1 with formal 
Hamiltonian

𝐻𝜏 𝜎 ≔ − ෍

𝑒= 𝑢,𝑣 ∈𝐸 ℤ𝑑

𝜏𝑒𝜎𝑢𝜎𝑣

• Ground configurations: Configurations 𝜎: ℤ𝑑 → −1,1 whose energy cannot be 
lowered by flipping finitely many spins.
The constant configurations 𝜎 ≡ + and 𝜎 ≡ − are ground configurations.

• Basic challenge: Are there non-constant ground configurations?

• When 𝑑 = 2, their existence is equivalent to the existence of bigeodesics in the 
first-passage percolation model with weights 𝜏 (Licea-Newman 96).
Bigeodesic: a doubly-infinite path for which every finite segment is a geodesic.
When 𝑑 = 2, it is conjectured that bigeodesics do not exist and hence non-
constant ground configurations do not exist.

5



Dobrushin boundary conditions and the 
Benjamini-Kalai-Schramm midpoint problem

• Dobrushin boundary conditions: A natural way to obtain a non-constant ground 
configuration is to consider the infinite-volume subsequential limit of ground 
configurations in finite domains with Dobrushin boundary conditions (+ spins 
above, - spins below).
For 𝑑 = 2, it is expected to yield a constant
configuration, as the finite-volume
interface fluctuates away.

• BKS midpoint problem: Analysis of finite-volume interfaces with Dobrushin
boundary conditions is thus related to the following midpoint problem: Prove that 

lim
|𝑢−𝑣|→∞

𝑢,𝑣∈ℤ2

ℙ 𝛾𝑢,𝑣 passes within distance 1 of
𝑢 + 𝑣

2
= 0

• For 𝑑 = 2, this was proved in great generality by Ahlberg-Hoffman 16, following 
Damron-Hanson 15 who assumed the differentiability of the limit shape boundary.
Both proofs are non-quantitative.

• The BKS midpoint problem can also be thought of as bounding the influence of 
specific edges on the passage time between 𝑢 and v. This was the BKS perspective.
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𝜎 = +

𝜎 = −
(−𝐿, 0) (𝐿, 0)

𝜎 = + 𝜎 = +

𝜎 = − 𝜎 = −



Results (coalescence of geodesics and 
BKS midpoint problem)

• Limit shape assumption: We assume that the limit shape has more than 32 
extreme points. This assumption seems mild and we can verify that it holds for a 
class of edge weight distributions (perturbations of a deterministic edge weight).

• Theorem (Dembin-Elboim-P. 22, “Coalescence exponent ≥ 1/8”):
Let 𝑢, 𝑣 ∈ ℤ2 and set 𝐿 = |𝑢 − 𝑣|. Then, for every 0 < 𝛼 < 1/8,

ℙ ∃𝑧, 𝑤 withmax |𝑧 − 𝑢|, |𝑤 − 𝑣| ≤ 𝐿𝛼 s.t. 𝛾𝑧,𝑤Δ𝛾𝑢,𝑣 >
𝐿

log 𝐿
≤ 𝐶𝐿−𝑐 𝛼

• First quantitative proof for coalescence of 
geodesics, except Alexander 20 who used 
very strong assumptions, currently verified 
only in exactly-solvable models.

• Presumably, the coalescence exponent equals  𝜉 =
2

3
in two dimensions.

• Corollary (Dembin-Elboim-P. 22, quantitative BKS midpoint problem):
Let 𝑢, 𝑣 ∈ ℤ2 and set 𝐿 = |𝑢 − 𝑣|. Then, 

ℙ 𝛾𝑢,𝑣 passes within distance 1 of
𝑢 + 𝑣

2
≤ 𝐶𝐿−𝑐
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